Open Lectures by Honorary Doctorate Recipients

Monday, June 11th, 2018
10:30 am – 12:45 pm - Rothberg Family Buildings
(Rachel & Selim Benin School of Computer Science & Engineering)
Edmond J. Safra campus

10:30 – 11:30 am

Prof. Paula Fredriksen

G-d was not Odd/To Choose the Jews: Augustine on the Election of Israel

As Christianity shifted ethnic base from (mostly) Jews to (mostly) gentiles, the *intra*-Jewish arguments preserved in Jewish scriptures came to be read as *anti*-Jewish arguments. With the conversion of Constantine, coercion of religious minorities loomed. Augustine applauded aggressive actions against pagans, and he framed coercive policies aimed at heretics. But against Christian *anti*-Judaism Augustine made a principled stand. His resort to Psalms in framing his arguments stands today on the walls of Yad va-Shem: “Slay them not.”

Prof. Paula Fredriksen, the Aurelio Professor of Scripture at Boston University, holds two honorary doctorates in theology and religious studies. Since 2009 she has been a Distinguished Visiting Professor of Comparative Religion at The Hebrew University of Jerusalem.

Room B221
Prof. Charles Manski

Public Policy in an Uncertain World

The term 'policy analysis' describes evaluations of past public policies and predictions of the outcomes of potential future policies. Credible policy analysis would explicitly express the limits to knowledge. However, policy analysis with incredible certitude has been common. Predictions are fragile, resting on unsupported assumptions and limited data. This lecture will discuss how to improve policy research to better inform policy making, by facing up to uncertainty rather than hiding it.

Prof. Charles Manski, Professor of Economics at Northwestern University, is a pioneer in the fields of econometrics, statistics, public policy analysis, and decision theory.

Gottlieb Auditorium

Prof. Stephen Lippard

Understanding and Improving Platinum Anticancer Drugs

About half of the people receiving chemotherapy take a platinum drug, mainly cisplatin (testicular cancer), carboplatin (many cancers), or oxaliplatin (colorectal cancer). The biological properties of cisplatin were serendipitously discovered by Rosenberg in 1965, and subsequent clinical studies revealed it to be a virtual cure for testicular cancer. This lecture will discuss the mechanism by which cisplatin works, a leading hypothesis for its efficacy against testicular tumors, and a new platinum drug, devised on the basis of this understanding, which is currently in clinical trials.

Prof. Stephen J. Lippard is the Arthur Amos Noyes Professor Emeritus of Chemistry at the Massachusetts Institute of Technology. His internationally recognized research has led to groundbreaking contributions to the fields of bio-inorganic and medicinal chemistry.

Room B220
11:45 am – 12:45 pm

Prof. Eric Maskin

An Introduction to Mechanism Design

Mechanism design can be thought of as the “engineering” part of economics: given an economic or social goal, can we devise a procedure (i.e., a “mechanism”) that results in an outcome attaining this goal? In this lecture I will give a few simple examples of mechanism design in action.

Professor and Nobel Laureate Eric Stark Maskin received his PhD from Harvard University in applied mathematics, and became a research fellow at Cambridge University. There, and in succeeding years at MIT, Harvard, and the Institute for Advanced Study in Princeton, his research into mechanism design has led to innovative work in many fields, including economics, political science, law and computer science. Since 2012 he has held the distinguished position of Adams University Professor at Harvard University.

Gottlieb Auditorium

11:45 am – 12:45 pm

Prof. Robert Singer

Watching How Memories Form in Brain Cells

How the nerve cells (neurons) in the brain can form stable connections with each other is the basis of learning and memory. When a contact is made between two neurons, this contact must be reinforced by repetitive stimulation (memorizing) to form a connection that becomes permanent. Specific molecules must be recruited there to build this structure known as the synapse. We now have devised a way to image this process while it is occurring in living brain cells in real time. Understanding these events will provide insights into loss of memory during aging, neurodegeneration and dementia.

Prof. Robert Singer, of Yeshiva University’s Albert Einstein School of Medicine, has focused his career on the cell biology of RNA, a molecule that plays an essential role in the expression of genes, and specifically on RNA behavior in single cells rather than in cell populations. Today, single cell analysis stands at the forefront of cell and molecular biology.

Room B220

The Hebrew University community is cordially invited!